Neuromuscular effort predicts walk-run transition speed in normal and adapted human gaits.
نویسندگان
چکیده
Often, humans and other animals move in a manner that minimizes energy costs. It is more economical to walk at slow speeds, and to run at fast speeds. Here, we asked whether humans select a gait that minimizes neuromuscular effort under novel and unfamiliar conditions, by imposing interlimb asymmetry during split-belt treadmill locomotion. The walk-run transition speed changed markedly across different gait conditions: forward, backward, hybrid (one leg forward, one leg backward) and forward with speed differences (one leg faster than the other). Most importantly, we showed that the human walk-run transition speed across conditions was predicted by changes in neuromuscular effort (i.e. summed leg muscle activations). Our results for forward gait and forward gait with speed differences suggest that human locomotor patterns are optimized under both familiar and novel gait conditions by minimizing the motor command for leg muscle activation.
منابع مشابه
Vaulting mechanics successfully predict decrease in walk–run transition speed with incline
There is an ongoing debate about the reasons underlying gait transition in terrestrial locomotion. In bipedal locomotion, the 'compass gait', a reductionist model of inverted pendulum walking, predicts the boundaries of speed and step length within which walking is feasible. The stance of the compass gait is energetically optimal-at walking speeds-owing to the absence of leg compression/extensi...
متن کاملThe role of plantigrady and heel-strike in the mechanics and energetics of human walking with implications for the evolution of the human foot.
Human bipedal locomotion is characterized by a habitual heel-strike (HS) plantigrade gait, yet the significance of walking foot-posture is not well understood. To date, researchers have not fully investigated the costs of non-heel-strike (NHS) walking. Therefore, we examined walking speed, walk-to-run transition speed, estimated locomotor costs (lower limb muscle volume activated during walking...
متن کاملThe relationship between joint kinetic factors and the walk-run gait transition speed during human locomotion.
The primary purpose of this project was to examine whether lower extremity joint kinetic factors are related to the walk-run gait transition during human locomotion. Following determination of the preferred transition speed (PTS), each of the 16 subjects walked down a 25-m runway, and over a floor-mounted force platform at five speeds (70, 80, 90, 100, and 110% of the PTS), and ran over the for...
متن کاملWhy change gaits? Dynamics of the walk-run transition.
Why do humans switch from walking to running at a particular speed? It is proposed that gait transitions behave like nonequilibrium phase transitions between attractors. Experiment 1 examined walking and running on a treadmill while speed was varied. The transition occurred at the equal-energy separatrix between gaits, with predicted shifts in stride length and frequency, a qualitative reorgani...
متن کاملChanging the demand on specific muscle groups affects the walk-run transition speed.
It has been proposed that muscle-specific factors trigger the human walk-run transition. We investigated if changing the demand on trigger muscles alters the preferred walk-run transition speed. We hypothesized that (1) reducing the demand on trigger muscles would increase the transition speed and (2) increasing the demand on trigger muscles would decrease the transition speed. We first determi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 219 Pt 18 شماره
صفحات -
تاریخ انتشار 2016